
Sandia National Laboratories is a multi-program laboratory managed and

operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

Martin Corporation, for the U.S. Department of Energy's National Nuclear

Security Administration under contract DE-AC04-94AL85000.

Evaluation of Mixed Continuous-Discrete
Surrogate Approaches

Patricia Hough, Quantitative Modeling and Analysis
Laura Swiler, Optimization and Uncertainty Quantification

Sandia National Laboratories

Herbert Lee
Applied Mathematics and Statistics
University of California, Santa Cruz

Curtis Storlie
Statistical Sciences Group

Los Alamos National Laboratory

SAND 2011-1137C

2

•http://safetycampus.files.wordpress.com/2008/1

2/forklift_accident_with_bomb.jpg

• Need to assess the Probability
of Bolt Failure under tensile load

• ADAGIO implicit nonlinear
dynamics code used for
simulation

• Discrete materials models
and thermal behavior

• Performance threshold:

P(bolt failure) = 10-6

• Performance margin:

10-6 – P(max observed strain –

critical strain > 0)

• Uncertainties: material model

parameters, critical strain

Motivating Example: Weapons safety

3

Motivating Example: System of Systems

• Large–scale models are decomposed into constitutive system models

• Black-Box model of actor behavior, independent subsystems making

choices based on inputs from others

• Involves mix of discrete choices and continuous design parameters

Planning Electrical

Power
Transportation

Network Water Resource

Mngmt

4

Why do we need surrogates?

• Optimization and UQ methods (both aleatory and epistemic) are

computationally expensive

• People want to perform a limited number of “true” simulations,

construct surrogate, and perform analysis on the surrogate

– Engineering analysis: discrete choices for design options, physics “knobs”
in codes

– Logistics, SoS applications

• Most surrogate models assume continuous inputs, and rely on

some assumptions about how the output varies as the input

varies

– With discrete variables, this no longer holds (especially if the variables are
categorical vs. ordinal)

• E.g., changing from 3 depots to 4 depots may result in fundamentally
different behavior of a logistics system

• Model A vs. Model B vs. Model C may result in very different
behaviors

5

Possible Options for
Modeling Discrete Variables (1)

• Categorical Regression

– Uses indicator functions for various levels of categorical variables

Y=0 + 1X1 + 2X2 where X1 is continuous, X2 is binary

 Y=0 + 1X1 for X2=0, Y=0 + 1X1 + 2 for X2=1

 Results in 2 different models, both with slope 1 but with intercepts
0 and (0 + 2)

– Computationally expensive because each combination of discrete
variables has a separate regression function

• Large numbers of discrete variables and for large numbers of “levels”
per variable => combinatorial explosion

• Need enough samples over the continuous variables for EACH
combination of discrete levels to obtain an accurate regression
function

6

Possible Options for
Modeling Discrete Variables (2)

• Gaussian Process Models

– Responses at points close together in input space are highly
correlated, responses at points far away are not

– Can provide an estimate of the prediction uncertainty which can be
used in optimization

– Explicit Representation of Categorical Variables in GP
• Qian and Wu, 2008

• Recommend isotropic correlation structure

– Treed Gaussian Process

• TGP papers: Gramacy and Lee, 2008; Gramacy and Taddy, 2009

• Allow partitions on categorical variables

• Surrogate model made at “leaf” nodes is formed only on continuous
variables

• Options: Bayesian GP with Linear Limiting Model

7

Possible Options for
Modeling Discrete Variables (3)

• Adaptive COmponent Selection and Smoothing Operator
(ACOSSO)

– Univariate smoothing spline estimate

– ACOSSO Estimate: f is an additive function

n

i

ii dxxfxfy
n 1

1

0

22)]("[)]([
1

n

i

q

j

p

qj

m

x

jjjjjjjjjjii

n

i

jj

q

j

jii

m

x

jmjjjj

q

j

jj

j

j

j

j

xfwdxxfdxxfwfy
n

dxxffy
n

xccmfcfcf

xfxf

1 1

2/1

1 1

2

2/1
1

0

2

2
1

0

2

1

1

0

2

1

2

1

''2'1

1

)()]("[)]('[)]([
1

)]("[)]([
1

0)()(...)2()1(

)()(

x

x

Term which penalizes

roughness

Term which penalizes

trend

Term which penalizes

categorical predictors

8

Testbed

• Need a testbed for evaluation of these various methods

• Desired characteristics of a testbed:

– Fast running evaluations

– Easy to compile, cross-platform compability

– Extendable

– File input/output

– Scalability of function in terms of number discrete variables
and/or levels per variable

– Ability to control problem complexity

9

Test Function 1

5 if)5.0(

4 if)5.0(7.0

3 if)5.0(5.2

2 if)5.0(5.0

1 if)5.0(5.3

)(

1

4

2

1

4

2

1

4

2

1

4

2

1

4

2

1

xx

xx

xx

xx

xx

xfy

10

Test Function 2

5 if)2(sin 3.5)2(sin7)2sin(

4 if)2(sin 8)2(sin7)2sin(

3 if)2(sin 0.5)2(sin7)2sin(

2 if)2(sin 12)2(sin7)2sin(

1 if)2(sin7)2sin(

)(

132

2

3

132

2

3

132

2

3

132

2

3

12

2

3

2

xxxx

xxxx

xxxx

xxxx

xxx

xfy

11

Test Functions 3

n

i

ixxfy
1

4

3)1()(

• Simple, analytic function

• We initially started with four variables:

– 2 continuous on [0,2]

– 2 discrete with value [0,1,2]

• Easy to scale up in terms of number of levels

– Scaled up the number of levels to five [-1,0,1,2,3].

• Easy to scale up in terms of number of discrete variables

– Scaled up to five discrete variables, with three and five levels

• Can also explore symmetry and function separability

12

Polynomial Generator

• Generates a random polynomial with degree

between two and six, and number of variables

between one and fifteen

• Uses a polynomial generating algorithm which

uses a system of linear equations to solve for the

random coefficients, described in:

– McDaniel, W. R. and B. E. Ankenman, “A Response Surface
Test Bed.” Qual. Reliab. Engng. Int. 2000; 16: 363–372

• Can control the degree of nonlinearity, range of

polynomial values, various features, etc.

13

Evaluation Process/Scripts

• For each surrogate type, looked at performance over a

number of build points (LHS sample points).

• Used MSE (mean squared error) as a measure of

goodness. Calculated MSE over a grid (where the grid

was dimensioned based on the number of inputs).

• Categorical Regression run in DAKOTA

– Generate a separate continuous surrogate for each
combination of discrete variable values/levels

• TGP and ACOSSO run in R

14

Results

15

Results: Test Function 1

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

CR-neural network
CR-cubic

polynomial
CR-linear

polynomial
CR-GP w/quadratic

trend TGP ACOSSO

Test Function 1

50

100

150

200

250

300

16

Results: Test Function 2

0.0001

0.001

0.01

0.1

1

10

100

1000

CR-neural network
CR-cubic

polynomial
CR-linear

polynomial
CR-GP w/quadratic

trend TGP ACOSSO

Test Function 2

50

100

150

200

250

300

17

Results: Test Function 2

• The TGP does not fully

partition over all of the

discrete variables

• Our premise was that it

would be sufficient to create

surrogates over partitions

which aggregrate the

discrete variables (e.g. have

one GP surrogate based on

X1 at levels 1 and 2, and

another with X1 at levels 3-

5).

• It may be that this is too

coarse, resulting in

inaccurate surrogates.

18

Results: Test Function 3

1E-08

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

CR-neural network CR-cubic polynomialCR-linear polynomial
CR-GP w/quadratic

trend TGP ACOSSO

Test Function 3

50

100

150

200

250

300

19

Results: Test Function 3, TGP

• SCALING UP DISCRETE LEVELS: FROM 3 to 5

• SCALING UP DISCRETE VARIABLES: FROM 2 to 5

• SCALING UP BOTH

• MSE decreases more quickly for more discrete variables vs.

an increased number of discrete level per variable

Test Function 3

Discrete 2 [0-1-2] 2 [-1-0-1-2-3] 5 [0-1-2] 5 [-1-0-1-2-3]

Continuous 2 [0,2] 2 [0,2] 2 [0,2] 2 [0,2]

50 0.7217199 119.75 1.38 319.22

100 0.03391995 57.15 0.79 300.08

150 0.01617074 25.94 0.87 272.76

200 0.00631333 25.26 0.72 265.96

300 4.45E-05 17.91 0.52 231.41

500 1.74E-06 1.27 0.32 223.68

SYMMETRIC - TGP

20

Results: Test Function 3, ACOSSO

• SCALING UP DISCRETE LEVELS: FROM 3 to 5

• SCALING UP DISCRETE VARIABLES: FROM 2 to 5

• SCALING UP BOTH

• MSE decreases more quickly for more discrete variables vs.

an increased number of discrete level per variable

Test Function 3

Discrete 2 [0-1-2] 2 [-1-0-1-2-3] 5 [0-1-2] 5 [-1-0-1-2-3]

Continuous 2 [0,2] 2 [0,2] 2 [0,2] 2 [0,2]

50 1.20E-04 8.15E-04 2.24E-04 2.56E-01

100 9.31E-06 1.55E-03 6.27E-06 4.06E-06

150 1.50E-06 1.34E-03 2.01E-06 2.56E-04

200 1.75E-07 3.20E-06 6.97E-07 1.99E-03

300 3.17E-07 4.68E-05 1.31E-07 5.24E-05

500 7.69E-08 3.08E-04 8.56E-08 2.14E-05

SYMMETRIC - ACOSSO

21

Results: Test Function 3, asymmetric case

• SCALING UP DISCRETE LEVELS: FROM 3 to 5

• SCALING UP DISCRETE VARIABLES: FROM 2 to 5

• SCALING UP BOTH, but function is now ASYMMETRIC

• Asymmetry greatly increases the difficulty of the emulation

for TGP, since symmetry helps by allowing different discrete

levels to be binned into the same bin

Test Function 3

Discrete 2 [1-2-3] 2 [1-2-3-4-5] 2 [1-2-3] 2 [1-2-3-4-5]

Continuous 2 [0,2] 2 [0,2] 2 [0,2] 2 [0,2]

50 53.53 11843.35 3.67E-03 0.34

100 0.62 2444.52 1.96E-03 0.18

150 0.26 3402.73 3.27E-04 0.12

200 0.15 4494.97 9.94E-04 0.07

300 0.02 2382.42 3.55E-06 0.03

500 0.01 0.39 5.78E-04 0.06

ACOSSOTGP

22

Results: Test Function Polynomial

• 2nd order polynomial with four variables (2 discrete and 2

continuous)

• 2 discrete variables at levels [20,50,80]

• Continuous variables between 0 and 100

1E-17

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

CR-neural network CR-cubic polynomialCR-linear polynomial
CR-GP w/quadratic

trend TGP ACOSSO

Test Function Poly-2

50

100

150

200

250

300

23

Results: Test Function Polynomial

Problem Complexity: going from a 2nd order polynomial with 14

terms to a 3rd order polynomial with 24 terms to a 4th order

polynomial with 19 terms

Finer discretization of discrete variables: 10 levels instead of 3

TGP ACOSSO TGP ACOSSO TGP ACOSSO

Discrete 2 [ten levels] 2 [ten levels] 2 [ten levels] 2 [ten levels] 2 [ten levels] 2 [ten levels]

Continuous 2[0,100] 2[0,100] 2[0,100] 2[0,100] 2[0,100] 2[0,100]

50 28.88 12.24 25.16 9.12 10.07 29.98

100 28.58 0.46 25.00 4.92 10.25 5.14

150 27.83 0.15 21.94 2.31 13.16 6.03

200 21.80 0.05 16.31 1.91 9.99 5.03

250 24.92 0.06 11.58 2.37 10.40 5.16

300 22.78 0.03 9.49 1.77 8.76 5.20

Test Function Poly 2 Test Function Poly 3 Test Function Poly 4

24

Observations

• Categorical Regression performed very well on

problems with small numbers of discrete

variables/levels

• ACOSSO performs very well.

• TGP performance is mixed

– Functions 1, 2: performs well when it seems to get enough
function evaluations (few hundred)

• Ability to identify the splits

• Not sufficient to aggregate across discrete levels

– Functions 3, poly: performs poorly (i.e, high MSE)
• There are adaptive methods, such as adaptively adding points to the

GP based on expected improvement.

25

Observations

• Scalability

– ACOSSO seems the most scalable, TGP suffers from too large an
aggregation across discrete levels, and categorical regression is
not scalable

– Is there a difference between scalability across discrete variables
vs. number of levels? Test function three suggests there might be

• Further work:

– Amount of interactions between variables

– Range/nonlinearity of function (polynomial testbed will allow)

– Improving efficiency of TGP and ACOSSO implementations

26

References

1. R.B. Gramacy and H. K. H. Lee. “Bayesian treed Gaussian process models with an application to
computer modeling.” Journal of the American Statistical Association, 103:1119-1130, 2008.

2. R. B. Gramacy and H. K. H. Lee. “Gaussian processes and limiting linear models.” Computational
Statistics and Data Analysis, 53:123-136, 2008.

3. R. B. Gramacy and M. Taddy. “Categorical inputs, sensitivity analysis, optimization and
importance tempering with tgp version 2, an R package for treed Gaussian process models.” R
manual available at http://cran.r-project.org/, 2009.

4. McDaniel, W. R. and B. E. Ankenman, “A Response Surface Test Bed.” Qual. Reliab. Engng. Int.
2000; 16: 363–372

5. P. Qian, H. Wu, and C.F.J. Wu. “Gaussian process models for computer experiments with
qualitative and quantitative factors. “ Technometrics, 50(3):383–396, 2008.

6. B. J. Reich, C. B. Storlie, and H.D. Bondell. “Variable selection in Bayesian smoothing spline
ANOVA models: Application to deterministic computer codes.” Technometrics, 51, 110-120,
2009.

7. C.B. Storlie and J.C. Helton. “Multiple predictor smoothing methods for sensitivity analysis:
Description of techniques.” Reliability Engineering and System Safety, 93(1):28–54, 2008.

8. C.B. Storlie, L.P. Swiler, J.C. Helton, and C.J. Sallaberry. “Implementation and evaluation of
nonparametric regression procedures for sensitivity analysis of computationally demanding
models.” Reliability Engineering and System Safety, 94 (2009) 1735–1763

9. C.B. Storlie, J.C. Helton,, B. J. Reich, and L.P. Swiler. “Analysis of Computationally Demanding
Models with Qualitative and Quantitative Inputs.” Draft manuscript.

http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/

27

Backup Slides

28

Why do we need surrogates?

• Optimization and UQ methods (both aleatory and epistemic) are
computationally expensive

• People want to perform a limited number of “true” simulations,
construct surrogate, and perform analysis on the surrogate

– Engineering analysis: discrete choices for design options, physics “knobs”
in codes

– Logistics, SoS applications

• There are a number of surrogates for continuous variables

– Parametric regression (e.g. linear, quadratic, rank)

– Nonparametric regression (e.g. local regression, ridge regression, etc).

– Splines

– Neural Networks

– Radial Basis Functions

– Gaussian Processes

– Stochastic expansion methods (e.g. polynomial chaos, stochastic
collocation)

29

Why are discrete variables hard
to model with surrogates?

• Most surrogate models assume continuous
inputs, and rely on some assumptions about how
the output varies as the input varies

– In linear regression, the output is a linear function of the
inputs

– In Gaussian processes, the assumption is that outputs of
input points “close together” will also be close together
(governed by a correlation structure)

– With discrete variables, this no longer holds (especially if the
variables are categorical vs. ordinal)

• E.g., changing from 3 depots to 4 depots may result in
fundamentally different behavior of a logistics system

• Model A vs. Model B vs. Model C may result in very different
behaviors

30

Possible Options for
Modeling Discrete Variables (2)

• Gaussian Process Models

– Responses at points close together in input space are highly correlated,
responses at points far away are not

– Requires significant computational effort in determining parameters
governing the covariance function

– Can provide an estimate of the prediction uncertainty which can be used in
optimization

• Explicit Representation of Categorical Variables in GP

– Qian and Wu, 2007

– Recommend isotropic correlation structure:

• Treed Gaussian Process

– TGP R papers, Gramacy 2009, Gramacy and Taddy, 2010

– Allow partitions on categorical variables

– Surrogate model made at “leaf” nodes is formed only on continuous
variables

– Options: Bayesian GP with Linear Limiting Model

}][)'(exp{)',(
1 1

21

22

d

u

J

j

jjjuuuo zzIvC xxxx

31

Testbed

• We developed a simple,

extensible testbed, written

in C++

• It currently has four test

functions plus a random

polynomial generator

• Fast running, uses

SmartArrays

• Class documentation

provided via html pages:

32

Testbed

• Execution is simple:

tf –i input_file –o output_file –f fn#

• Example

tf –i input_values –o output_values –f 1

input-values:

Function 1 input

X1=1

X2 = 0.42

output_values

2.50737536

Numterms: 14

.......... Pure terms

73.9862

-0.279989 {1,1}

0.000350121 {1,2}

-0.136502 {2,1}

2.51957e-05 {2,2}

-0.242437 {3,1}

-0.0236206 {4,1}

-0.00130055 {4,2}

.......... Mixed second order terms

0.000311869 {1,1} {2,1}

0.00217202 {1,1} {3,1}

-8.07668e-05 {1,1} {4,1}

0.00212612 {2,1} {3,1}

0.00171962 {2,1} {4,1}

0.00018751 {3,1} {4,1}

33

Testbed

• Need a testbed for evaluation of these various methods

• Desired characteristics of a testbed:

– Fast running evaluations

– Easy to compile, cross-platform compability

– Extendable

– File input/output

– Scalability of function in terms of number discrete variables
and/or levels per variable

• Existing optimization testbeds not exactly appropriate

– Many tests either all continuous (e.g. to test quadratic
programming, linear programming algorithms) or all integer (to
test integer programming)

– BARON does have MINLP problems, but the interesting part of the
problem is constraints: we only need objective function

34

Results: Test Function Polynomial

• Scalability: going from 3 discrete levels to 10 discrete levels

• Problem Complexity: going from a 2nd order polynomial with

14 terms to a 3rd order polynomial with 24 terms

Test Function Poly 2 TGP TGP ACOSSO ACOSSO

Discrete 2 [20,50,80] 2 [ten levels] 2 [20,50,80] 2 [ten levels]

Continuous 2[0,100] 2[0,100] 2[0,100] 2[0,100]

50 9.19 27.14 0.36 10.79

100 8.34 25.61 0.05 0.22

150 0.12 25.04 0.05 0.18

200 0.01 24.26 0.03 0.16

300 0.01 18.04 0.04 0.11

500 0.00 10.81 0.03 0.09

Test Function Poly 3 TGP TGP ACOSSO ACOSSO

Discrete 2 [20,50,80] 2 [ten levels] 2 [20,50,80] 2 [ten levels]

Continuous 2[0,100] 2[0,100] 2[0,100] 2[0,100]

50 11.30 24.83 2.52 7.95

100 4.30 24.68 0.67 5.13

150 2.46 23.21 0.38 2.70

200 0.98 20.79 0.42 57.71

250 0.89 9.68 0.37 1.25

300 1.21 9.49 0.45 1.33

